

Key Differences between Radar and Communications Systems

12th Annual International Symposium on Advanced Radio Technologies

Michael Davis

Georgia Tech Research Institute
Sensors and Electromagnetic Applications Laboratory

mike.davis@gtri.gatech.edu

Goals of Communications & Radar Systems

Communications

- Transfer information from a source to a sink.
- Transmit signals through a channel connecting source and sink.

Radar

- Detect the presence of targets and/or estimate their parameters.
- Radiate electromagnetic energy and gather information about the environment by observing echoes.

Communications and Radar Systems

Communications

Input: Communications Signal

System: Direct path and multipath

Output: Noisy, distorted version of signal

Radar

Input: Radar waveform

System: Targets in environment

Output: Noisy echoes due to targets

Radar vs. Communications

Radar

"Given the radar waveform and the observed echoes, characterize the system."

Communications

"Given knowledge of the system (channel) and an observation of the signal, estimate the transmitted signal."

Communications: Data Transmission

Communications: Channel Sounding

Radar vs. Channel Sounding

- In communications, the characteristics of the channel are nuisance parameters that must be accounted for but are of no inherent importance.
- In radar, the "channel" and its characteristics are of primary interest.
- Example: The Channel Impulse Response
 - Each time tap is due to the direct path or scattering from reflectors at a particular range.
 - Comms Apply an equalizer to compensate.
 - Radar Use multiple pulses to resolve in cross-range.

Radar Missions

- Detect presence of targets at particular locations/Dopplers.
 - Ground moving target indication (GMTI)
 - Air moving target indication (AMTI)
- Estimate parameters of targets at a particular location
 - Synthetic aperture radar (SAR) imaging

Detection vs. Estimation

- Radar systems typically search a volume/surface for targets by scanning a directional beam. Within each beam position, the decides if a target is present at a particular range/Doppler by calculating the <u>likelihood ratio</u>.
- After synchronization, communications systems estimate the chip value for a particular modulation chip by calculating the <u>maximum a</u> posteriori (MAP) estimate.

Radar vs. Communications "Links"

- Propagation Losses
 - One-way comms propagation models usually assume something on order of $R^2 I R^3$
 - Radar is a two-way channel, so ERP must account for \mathbb{R}^4 propagation loss.
- Direct path vs. Multipath
 - Comms may include direct path or reflections off of surface.
 - Radar returns are always due to scattering, which may require increased power for "small" targets.

Radar vs. Communications "Capacity"

- Communications channels may be bandwidth limited, so increasing transmit power may be of limited utility.
- Some radars can increase search volumes by increasing transmit power and decreasing dwell times.

Radar Waveforms: Coherence Requirements

- Coherent radar systems require signal to have some spectral support for a specified coherent processing interval (CPI)
- Airborne pulse-Doppler radars transmits a series of identical pulses to suppress clutter. (CPI on order of milliseconds)
- Synthetic aperture radar (SAR) forms high resolution imagery of the ground by transmitting a sequence of pulses. (CPI may be on order of seconds, during which the waveform cannot change significantly)

Radar vs. Communications Antennas

- Mobile units of communications systems typically employ nearly omnidirectional antennas.
- Radar systems typically scan a high-gain antenna over a specified surveillance volume/search area/scene to be imaged.
- Incident power density of radar system may fluctuate rapidly due to antenna scan.

Radar Development Cycle: SPY 1

- First installed on USS Norton Sound, 1973.
- Entered active service in 1983 as SPY-1A.
- Subsequently upgraded to B/D and D(V) versions.

Currently deployed on about 100 surface ships.

"SPY-1 is the most widely fielded naval phased array radar in the world. It is the heart of the Lockheed Martin-developed Aegis Weapon System. It automatically detects and tracks hundreds of targets from the wave tops to the exoatmosphere."

-LM Brochure

Summary

- Radar and communications exploit similar electromagnetic phenomena and are well described by similar mathematical theories.
- Significant differences in operational requirements exist between the two.